Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 271, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517512

RESUMO

Various virulence determinants in Pseudomonas aeruginosa are regulated by the quorum sensing (QS) network producing and releasing signalling molecules. Two of these virulence determinants are the pyocyanin and pyoverdine, which interfere with multiple cellular functions during infection. The application of QS-inhibiting agents, such as cyclodextrins (CDs), appears to be a promising approach. Further to method development, this research tested in large-volume test systems the effect of α- and ß-CD (ACD, BCD) at 1, 5, and 10 mM concentrations on the production of pyocyanin in the P. aeruginosa model system. The concentration and time-dependent quorum quenching effect of native CDs and their derivatives on pyoverdine production was tested in a small-volume high-throughput system. In the large-volume system, both ACD and BCD significantly inhibited pyocyanin production, but ACD to a greater extent. 10 mM ACD resulted in 58% inhibition, while BCD only ~40%. Similarly, ACD was more effective in the inhibition of pyoverdine production; nevertheless, the results of RMANOVA demonstrated the significant efficiency of both ACD and BCD, as well as their derivatives. Both the contact time and the cyclodextrin treatments significantly influenced pyoverdine production. In this case, the inhibitory effect of ACD after 48 h at 12.5 mM was 57%, while the inhibitory effect of BCD and its derivatives was lower than 40%. The high-level significant inhibition of both pyocyanin and pyoverdine production by ACD was detectable. Consequently, the potential value of CDs as QS inhibitors and the antivirulence strategy should be considered. KEYPOINTS: • Applicability of a simplified method for quantification of pyocyanin production was demonstrated. • The cyclodextrins significantly affected the pyocyanin and pyoverdine production. • The native ACD exhibited the highest attenuation in pyoverdine production.


Assuntos
Oligopeptídeos , Infecções por Pseudomonas , Percepção de Quorum , Humanos , Pseudomonas aeruginosa , Virulência , Piocianina , Fatores de Virulência , Antibacterianos/farmacologia , Biofilmes
2.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569709

RESUMO

The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Ciclodextrinas , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Ciclodextrinas/farmacologia , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
3.
Metabolites ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984886

RESUMO

Mycotoxins are toxic metabolites of molds. Chronic exposure to alternariol, zearalenone, and their metabolites may cause the development of endocrine-disrupting and carcinogenic effects. Alternariol-3-glucoside (AG) and alternariol-9-monomethylether-3-glucoside (AMG) are masked derivatives of alternariol. Furthermore, in mammals, zearalenone-14-glucuronide (Z14Glr) is one of the most dominant metabolites of zearalenone. In this study, we examined serum albumins and cyclodextrins (CDs) as potential binders of AG, AMG, and Z14Glr. The most important results/conclusions were as follows: AG and AMG formed moderately strong complexes with human, bovine, porcine, and rat albumins. Rat albumin bound Z14Glr approximately 4.5-fold stronger than human albumin. AG-albumin and Z14Glr-albumin interactions were barely influenced by the environmental pH, while the formation of AMG-albumin complexes was strongly favored by alkaline conditions. Among the mycotoxin-CD complexes examined, AMG-sugammadex interaction proved to be the most stable. CD bead polymers decreased the mycotoxin content of aqueous solutions, with moderate removal of AG and AMG, while weak extraction of Z14Glr was observed. In conclusion, rat albumin is a relatively strong binder of Z14Glr, and albumin can form highly stable complexes with AMG at pH 8.5. Therefore, albumins can be considered as affinity proteins with regard to the latter mycotoxin metabolites.

4.
Carbohydr Polym ; 310: 120717, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925244

RESUMO

Nepafenac is a highly effective NSAID used for treating postoperative ocular inflammation and pain after cataract surgery and its advantage over conventional topical NSAIDs has been proved many times. However, Nevanac® is a suspension eye drop, which clearly lacks patient compliance causing irritation, blurred vision, foreign body sensation along with problematic dosage due to its sticky, inhomogeneous consistence. In this study, nepafenac containing eye drops were prepared using hydroxypropyl-ß-cyclodextrin to ensure complete dissolution of nepafenac, sodium hyaluronate to provide mucoadhesion and adequate viscosity and a preservative-free officinal formula, Oculogutta Carbomerae containing carbomer (just like Nevanac®), therefore providing a similar base for the new formulations. According to an experimental design, 11 formulations were tested in vitro including two reference formulations by measuring their viscosity, mucoadhesion, drug release and corneal permeability. Finally, two formulations were found promising and investigated further on porcine eyes ex vivo and corneal distribution of nepafenac was determined by RAMAN mapping. The results showed that one formulation possessed better bioavailability ex vivo than Nevanac® 0.1 % suspension, while the other formulation containing only 60 % of the original dose were ex vivo equivalent with Nevanac® opening the way to nepafenac-containing eye drops with better patient compliance in the future.


Assuntos
Ciclodextrinas , Animais , Suínos , Soluções Oftálmicas , Anti-Inflamatórios não Esteroides , Fenilacetatos , Inflamação/tratamento farmacológico
5.
Pharmaceutics ; 14(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36559052

RESUMO

Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.

6.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430830

RESUMO

Alternaria mycotoxins, including alternariol (AOH), alternariol-9-monomethylether (AME), and their masked/modified derivatives (e.g., sulfates or glycosides), are common food contaminants. Their acute toxicity is relatively low, while chronic exposure can lead to the development of adverse health effects. Masked/modified metabolites can probably release the more toxic parent mycotoxin due to their enzymatic hydrolysis in the intestines. Previously, we demonstrated the complex formation of AOH with serum albumins and cyclodextrins; these interactions were successfully applied for the extraction of AOH from aqueous matrices (including beverages). Therefore, in this study, the interactions of AME, alternariol-3-sulfate (AS), and alternariol-9-monomethylether-3-sulfate (AMS) were investigated with albumins (human, bovine, porcine, and rat) and with cyclodextrins (sulfobutylether-ß-cyclodextrin, sugammadex, and cyclodextrin bead polymers). Our major results/conclusions are the following: (1) The stability of mycotoxin-albumin complexes showed only minor species dependent variations. (2) AS and AMS formed highly stable complexes with albumins in a wide pH range, while AME-albumin interactions preferred alkaline conditions. (3) AME formed more stable complexes with the cyclodextrins examined than AS and AMS. (4) Beta-cyclodextrin bead polymer proved to be highly suitable for the extraction of AME, AS, and AMS from aqueous solution. (5) Albumins and cyclodextrins are promising binders of the mycotoxins tested.


Assuntos
Ciclodextrinas , Micotoxinas , Animais , Bovinos , Humanos , Ratos , Ciclodextrinas/química , Micotoxinas/química , Albumina Sérica , Sulfatos , Suínos
7.
Pharmaceutics ; 14(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145637

RESUMO

Chlorpromazine (CPZ) is an antipsychotic drug which can cause several adverse effects and drug poisoning. Recent studies demonstrated that CPZ forms highly stable complexes with certain cyclodextrins (CDs) such as sulfobutylether-ß-CD (SBECD) and sugammadex (SGD). Since there is no available antidote in CPZ intoxication, and considering the good tolerability of these CDs even if when administered parenterally, we aimed to investigate the protective effects of SBECD and SGD against CPZ-induced acute toxicity employing in vitro (SH-SY5Y neuroblastoma cells) and in vivo (zebrafish embryo) models. Our major findings and conclusions are the following: (1) both SBECD and SGD strongly relieved the cytotoxic effects of CPZ in SH-SY5Y cells. (2) SGD co-treatment did not affect or increase the CPZ-induced 24 h mortality in NMRI mice, while SBECD caused a protective effect in a dose-dependent fashion. (3) The binding constants of ligand-CD complexes and/or the in vitro protective effects of CDs can help to estimate the in vivo suitability of CDs as antidotes; however, some other factors can overwrite these predictions.

8.
Environ Toxicol Pharmacol ; 95: 103965, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031178

RESUMO

Alternariol (AOH) is a mycotoxin produced by Alternaria fungi, it appears as a contaminant in tomatoes, grains, and grapes. The chronic exposure to AOH may cause carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are cyclic oligosaccharides, they form host-guest complexes with apolar molecules. In this study, the interactions of AOH with CD monomers and polymers were examined employing fluorescence spectroscopy. Thereafter, the protective effects of certain CDs vs. AOH-induced toxicity were investigated on HeLa cells and on zebrafish embryos. Our major observations are the following: (1) Sugammadex forms highly stable complex with AOH (K = 4.8 ×104 L/mol). (2) Sugammadex abolished the AOH-induced toxicity in HeLa cells, while native ß-CD did not show relevant protective effect. (3) Each CD tested decreased the AOH-induced mortality and sublethal adverse effects in zebrafish embryos: Interestingly, native ß-CD showed the strongest protective impact in this model. (4) CD technology may be suitable to relieve AOH-induced toxicity.


Assuntos
Ciclodextrinas , Micotoxinas , Animais , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células HeLa , Humanos , Lactonas , Micotoxinas/toxicidade , Polímeros/química , Sugammadex , Peixe-Zebra
9.
Molecules ; 27(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35684540

RESUMO

Quorum sensing (QS) is a population-density-dependent communication process of microorganisms to coordinate their activities by producing and detecting low-molecular-weight signal molecules. In pathogenic bacteria, the property controlled by QS is often related to infectivity, e.g., biofilm formation. Molecular encapsulation of the QS signals is an innovative method to prevent the signals binding to the receptors and to attenuate QS. Cyclodextrins (CDs) may form an inclusion complex with the signals, thus reducing the communication (quorum quenching, QQ). A systematic study was performed with α-, ß-cyclodextrin, and their random methylated, quaternary amino and polymer derivatives to evaluate and compare their effects on the biofilm formation of Pseudomonas aeruginosa. To examine the concentration-, temperature- and time-dependency of the QQ effect, the CDs were applied at a 0.1-12.5 mM concentration range, and biofilm formation was studied after 6, 24, 48 and 72 h at 22 and 30 °C. According to the results, the QS mechanism was significantly inhibited; the size of the cavity, the structure of the substituents, as well as the monomeric or polymeric character together with the concentration of the CDs have been identified as key influencing factors of biofilm formation. Statistically determined effective concentration values demonstrated outstanding efficiency (higher than 80% inhibition) of α-CD and its random methylated and polymer derivatives both on the short and long term. In summary, the potential value of CDs as inhibitors of QS should be considered since the inhibition of biofilm formation could significantly impact human health and the environment.


Assuntos
Ciclodextrinas , Pseudomonas aeruginosa , Biofilmes , Ciclodextrinas/farmacologia , Humanos , Polímeros/farmacologia , Percepção de Quorum
10.
Int J Pharm ; 620: 121739, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35421532

RESUMO

As remdesivir, the first FDA-approved drug for SARS-CoV-2 infection, can be used only for hospitalized patients due to intravenous administration, there is an urgent need of effective oral antiviral formulations to be used at early stage of infection in an outpatient setting. The present paper reports on the comparative pharmacokinetics of the electrospun nanofiber remdesivir/sulfobutyl ether beta-cyclodextrin formulation after intravenous and buccal administration. It was postulated that oral transmucosal administration avoids remdesivir from metabolic transformation and intact remdesivir can be detected in plasma, but only the active metabolite GS-441524 could be experimentally detected at a significantly lower plasma level, than that provided by the intravenous route. In buccally treated animals, the metabolite GS-441524 appeared only at 1 h after treatment, while in intravenously treated animals, GS-441524 was possible to quantify even at the first time-point of blood collection. Further optimization of formulation is required to improve pharmacokinetics of remdesivir-sulfobutyl ether beta-cyclodextrin formulation upon buccal administration.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Administração Bucal , Administração Intravenosa , Alanina/análogos & derivados , Animais , Antivirais/farmacocinética , Disponibilidade Biológica , Furanos , Humanos , Pirróis , Coelhos , Triazinas
11.
Eur J Pharm Biopharm ; 174: 1-9, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35341942

RESUMO

The present study aimed at developing a potential in situ gellable dexamethasone (DXM) eye drop. Poly(aspartic acid) (PASP) derivatives were synthesized with dual functionality to improve the solubility of DXM, and to achieve in situ gelation. First, amine-modified ß-cyclodextrin (CD) was attached to polysuccinimide (PSI), second, thiol functionalities were added by the reaction of cysteamine and succinimide rings. Finally, the PSI derivatives were hydrolysed to the corresponding PASP derivatives to get water-soluble polymers. Phase-solubility studies confirmed the complexation ability of CD-containing PASP derivatives. In situ gelation and the effect of the CD immobilization on this behaviour were characterized by rheological measurements. The solubilizing effect of CD was confirmed by kinetic solubility measurements, whereas in vitro corneal permeability assay (corneal-PAMPA) measurements were performed to determine in vitro permeability and flux values. The effect of the PASP derivatives on permeation strongly depended on chemical composition and polymer concentration.


Assuntos
Ciclodextrinas , Dexametasona , Sistemas de Liberação de Medicamentos , Géis , Peptídeos , Polímeros/química , Solubilidade
12.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268690

RESUMO

Cyclodextrins are high molecular weight, hydrophilic, cyclic, non-reducing oligosaccharides, applied as excipients for the improvement of the solubility and permeability of insoluble active pharmaceutical ingredients. On the other hand, beta-cyclodextrins are used as cholesterol sequestering agents in life sciences. Recently, we demonstrated the cellular internalization and intracellular effects of cyclodextrins on Caco-2 cells. In this study, we aimed to further investigate the endocytosis of (2-hydroxylpropyl)-beta-(HPBCD) and random methylated-beta-cyclodextrin (RAMEB) to test their cytotoxicity, NF-kappa B pathway induction, autophagy, and lysosome formation on HeLa cells. These derivatives were able to enter the cells; however, major differences were revealed in the inhibition of their endocytosis compared to Caco-2 cells. NF-kappa B p65 translocation was not detected in the cell nuclei after HPBCD or RAMEB pre-treatment and cyclodextrin treatment did not enhance the formation of autophagosomes. These cyclodextrin derivates were partially localized in lysosomes after internalization.


Assuntos
Ciclodextrinas , Células CACO-2 , Ciclodextrinas/farmacologia , Excipientes , Células HeLa , Humanos , Solubilidade
13.
Environ Sci Pollut Res Int ; 29(1): 210-221, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34322792

RESUMO

Mycotoxins are toxic metabolites of filamentous fungi; they are common contaminants in numerous foods and beverages. Cyclodextrins are ring-shaped oligosaccharides, which can form host-guest type complexes with certain mycotoxins. Insoluble beta-cyclodextrin bead polymer (BBP) extracted successfully some mycotoxins (e.g., alternariol and zearalenone) from aqueous solutions, including beverages. Therefore, in this study, we aimed to examine the ability of BBP to remove other 12 mycotoxins (including aflatoxin B1, aflatoxin M1, citrinin, dihydrocitrinone, cyclopiazonic acid, deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, zearalanone, α-zearalanol, and ß-zearalanol) from different buffers (pH 3.0, 5.0, and 7.0). Our results showed that BBP can effectively extract citrinin, dihydrocitrinone, sterigmatocystin, zearalanone, α-zearalanol, and ß-zearalanol at each pH tested. However, for the removal of ochratoxin A, BBP was far the most effective at pH 3.0. Based on these observations, BBP may be a suitable mycotoxin binder to extract certain mycotoxins from aqueous solutions for decontamination and/or for analytical purposes.


Assuntos
Ciclodextrinas , Patulina , Zeranol , beta-Ciclodextrinas , Polímeros
14.
Front Mol Biosci ; 8: 735357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805269

RESUMO

Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, ß-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.

15.
BMC Anesthesiol ; 21(1): 206, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404345

RESUMO

BACKGROUND: Residual neuromuscular block at the end of surgery may compromise the patient's safety. The risk of airway complications can be minimized through monitoring of neuromuscular function and reversal of neuromuscular block if needed. Effective reversal can be achieved with selective relaxant binding agents, however, sugammadex is the only clinically approved drug in this group. We investigated the concentration-response properties of a novel selective relaxant binding agent, carboxymethyl-γ-cyclodextrin for the reversal of neuromuscular block. We evaluated the hypothesis that it is equally potent for reversing neuromuscular block as sugammadex. METHODS: Phrenic nerve - hemidiaphragm tissue preparations were isolated from male Wistar rats and suspended in a tissue holder allowing electrical stimulation of the nerve and monitoring of muscle contraction force. Concentration-response relationships were constructed for the neuromuscular blocking agents rocuronium, pipecuronium, and vecuronium. The half-effective concentrations of sugammadex and carboxymethyl-γ-cyclodextrin for reversal of neuromuscular block were determined. RESULTS: The half effective concentrations (95% confidence interval, CI) were 7.50 (6.93-8.12) µM for rocuronium, 1.38 (1.33-1.42) µM for pipecuronium, and 3.69 (3.59-3.80) µM for vecuronium. The half effective concentrations (95% CI) of carboxymethyl-γ-cyclodextrin and sugammadex were 35.89 (32.67-39.41) µM and 3.67 (3.43-3.92) µM, respectively, for the reversal of rocuronium-induced block; 10.14 (9.61-10.70) µM and 0.67 (0.62-0.74) µM, respectively, for the reversal of pipecuronium-induced block; and 376.1 (341.9-413.8) µM and 1.45 (1.35-1.56) µM, respectively, for the reversal of vecuronium-induced block. CONCLUSIONS: Carboxymethyl-γ-cyclodextrin is an effective, but less potent agent for reversal of neuromuscular block than sugammadex.


Assuntos
Bloqueio Neuromuscular , Bloqueadores Neuromusculares/antagonistas & inibidores , gama-Ciclodextrinas/farmacologia , Animais , Ratos Wistar
16.
Pharmaceutics ; 13(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199011

RESUMO

Enzyme replacement therapies (ERT) have been of great help over the past 30 years in the treatment of various lysosomal storage disorders, including chronic pancreatitis and its common complication, exocrine pancreatic insufficiency. Research shows that difficulties in designing such drugs can be overcome by using appropriate additives and various enzyme immobilization techniques. Cyclodextrins (CDs) can be considered as a promising additive for enzyme replacement therapies, as they are known to enhance the activity of enzymes in a complex process due to their specific binding. In this study, we investigated the formulation of lipases (from Aspergillus oryzae and Burkholderia cepacia) paired with different cyclodextrins in poly(vinyl alcohol) (PVA) nanofibers by electrospinning technique. We examined the effect of the presence of cyclodextrins and nanoformulation on the lipase activity. The rheological and morphological characterizations of precursors and nanofibers were also performed using a viscometer as well as electron and Raman microscope. We found that by selecting the appropriate CD:lipase ratio, the activity of the investigated enzyme could be multiplied, and cyclodextrins can support the homogeneous dispersion of lipases inside the solid formula. In addition, the entrapment of lipases in PVA nanofibers led to a significant increase in activity compared to the preformulated precursor. In this way, the nanofibrous formulation of lipases combining CDs as additives can provide an efficient and sustainable possibility for designing novel solid medicines in ERT.

17.
Carbohydr Polym ; 264: 118011, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910715

RESUMO

Veklury™ by Gilead Sciences, Inc., containing antiviral drug, remdesivir (REM) has received emergency authorization in the USA and in Europe for COVID-19 therapy. Here, for the first time, we describe details of the non-covalent, host-guest type interaction between REM and the solubilizing excipient, sulfobutylether-beta-cyclodextrin (SBECD) that results in significant solubility enhancement. Complete amorphousness of the cyclodextrin-enabled REM formulation was demonstrated by X-ray diffraction, thermal analysis, Raman chemical mapping and electron microscopy/energy dispersive spectroscopy. The use of solubilizing carbohydrate resulted in a 300-fold improvement of the aqueous solubility of REM, and enhanced dissolution rate of the drug enabling the preparation of stable infusion solutions for therapy. 2D ROESY NMR spectroscopy provided information on the nature of REM-excipient interaction and indicated the presence of inclusion phenomenon and the electrostatic attraction between anionic SBECD and nitrogen-containing REM in aqueous solution.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Excipientes/química , beta-Ciclodextrinas/química , Monofosfato de Adenosina/química , Alanina/química , Antivirais/química , Varredura Diferencial de Calorimetria , Liofilização/métodos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Nanofibras/química , Pós , Solubilidade , Análise Espectral Raman , Difração de Raios X , Tratamento Farmacológico da COVID-19
18.
Carbohydr Polym ; 257: 117620, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541648

RESUMO

Professor Dexter French (1918-1981) was an American chemist and biochemist at Iowa State College (University in 1959). He devoted his career to advance knowledge of polysaccharides and oligosaccharides, in particular starch, cyclodextrins, and enzymes. Cyclodextrins are oligosaccharides obtained from starch and are typically cage molecules with a hydrophobic cavity that can encapsulate other compounds nowadays the basis for many industrial applications. Since the 1960s, he has been recognized as an outstanding authority in the field of starches and cyclodextrins and has inspired researchers in laboratories around the world. This review, on the fortieth anniversary of his death, commemorates his remarkable contribution to starch and cyclodextrin chemistry. Firstly, we give an overview of his personal life and career. Secondly, we highlight some of the results on starch and cyclodextrins from Professor French and his group. A third part discusses his impact on the modern chemistry of cyclodextrins and starch.

19.
Pharmaceutics ; 13(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504045

RESUMO

Cyclodextrins are widely used excipients for increasing water-solubility, delivery and bioavailability of lipophilic drugs. By using fluorescent cyclodextrin derivatives, we showed previously that cyclodextrins are able to enter Caco-2 intestinal cells by endocytosis, but the influence of different fluorescent labeling on the same cyclodextrin derivative has not been studied. The consequences of the cellular internalization of cyclodextrins have not been revealed yet either. The aims of this study were to compare the cellular internalization of fluorescein- and rhodamine-labeled (2-hydroxypropyl)-, (HPBCD) and randommethyl-ß-cyclodextrins (RAMEB) and to investigate the intracellular effects of these derivatives on Caco-2 cells. Stimulation of the NF-kappa B pathway and autophagy and localization of these derivatives in lysosomes were tested. The endocytosis of these derivatives was examined by fluorescence microscopy and flow cytometry. Both fluorescein- and rhodamine-labeled derivatives entered the cells, therefore the type of the fluorescent labeling did not influence their internalization. Cyclodextrin pretreatment did not activate the translocation of the p65 subunit of the NF-kappa B heterodimer into the cell nuclei from the cytoplasm. After HPBCD or RAMEB treatment, formation of the autophagosomes did not increase compared to the control sample and at the same time these derivatives could be detected in lysosomes after internalization.

20.
Aging (Albany NY) ; 13(2): 1718-1728, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468711

RESUMO

Among parent cyclodextrins (CDs), alpha-CD (a-CD) has been utilized in a number of nutraceutical products, and approved as a dietary fiber to affect glycemic response and reduce dietary fat absorption. To extend our current knowledge on the biology of this natural carbohydrate, here we investigated its potential effects on cellular water uptake and aging. Two independent in vivo biological test systems were used, a single cell Xenopus oocyte with expressed human aquaporin for cell hydration studies and the nematode Caenorhabditis elegans for testing life span in the treated animals. a-CD was found to enhance water uptake through aquaporins of oocytes. Furthermore, the compound promoted longevity in C. elegans. Together, these results raise a rational for assaying a-CD as a potent drug candidate in treating various age-related diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Água/metabolismo , alfa-Ciclodextrinas/farmacologia , Animais , Aquaporinas/metabolismo , Transporte Biológico/efeitos dos fármacos , Caenorhabditis elegans , Humanos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...